Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Yun Fu, ${ }^{\text {a,b }}$ * Shi-Zhou Fu ${ }^{\text {b }}$ and Tao Yu ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=571 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.047$
$w R$ factor $=0.123$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Tetrakis(μ - N-acetyl- N-phenylglycinato- $\kappa^{2} O, O^{\prime}$)bis[(N-acetyl- N-phenylglycinato- $\kappa^{3} O, O, O$)-(1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$)cerium(III)] dihydrate

In the title complex, $\left[\mathrm{Ce}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{6}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, each Ce atom shows a distorted tricapped trigonal prismatic coordination, comprising two N -atom donors from a $1,10-$ phenanthroline ligand and seven O atoms of the N -acetyl- N phenylglycine ($L 2$) molecules. Two Ce atoms are bridged by two terdentate and two bidentate carboxylate groups of $L 2$, to give a centrosymmetric dimer. The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The title complex, (I) (Fig. 1), contains centrosymmetric dinuclear cerium/phenanthroline $/ N$-acetyl- N-phenylglycinate complexes and uncoordinated water molecules. Each cerium(III) ion is nine-coordinated by one 1,10 -phenanthroline (L1) ligand via atoms N4 and N5, one chelating bidentate carboxylate group of an N-acetyl- N-phenylglycine ($L 2$) ligand via O 4 and O 5 , two bridging bidentate carboxylate groups from two $L 2$ ligands via O^{i} (see Table 1 for symmetry code) and O7, and one bridging terdentate carboxylate group of $L 2$ via $\mathrm{O1}^{\mathrm{i}}$ and chelating terdentate carboxylate groups of $L 2$ via O 1 and O 2 .

(I)

The coordination geometry around Ce is that of a distorted tricapped trigonal prism, with the capping positions occupied by atoms N5 of $L 1$ and O1 and O4 of two L2 ligands. The two Ce ions are connected by four $L 2$ ligands via two bidentate and two terdentate carboxylate bridges, with a $\mathrm{Ce} \cdots \mathrm{Ce}$ distance of 3.9972 (19) A. The average length of the bridging bidentate $\mathrm{Ce}-\mathrm{O}$ bonds ($2.448 \AA$) is slightly less than that of the bridging terdentate $\mathrm{Ce}-\mathrm{O} 1^{\mathrm{i}}$ bond [2.461 (4) \AA] which, in turn, is less than the average for the chelating bidentate $\mathrm{Ce}-$ O bonds $[2.533(5) \AA$) The chelating terdentate $\mathrm{Ce}-\mathrm{O}$ bond is the longest of all. All of these are shorter than the $\mathrm{Ce}-\mathrm{N}$ bonds. The other bond lengths and angles in (I) are unexceptional.

Received 29 November 2004 Accepted 21 December 2004 Online 8 January 2005

Figure 1
The structure of the title compound, (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.

The crystal packing of (I), showing the hydrogen-bonding interactions as dashed lines. H atoms have been omitted.

The $\mathrm{Ce}-\mathrm{O}$ bonds in (I) are shorter than the equivalent $\mathrm{La}-\mathrm{O}$ bonds in the corresponding lanthanum compound $(\mathrm{Fu}$ et al., 2004), where the average $\mathrm{La}-\mathrm{O}$ bonds for bridging bidentate, bridging terdentate, chelating bidentate, chelating terdentate ligands and the average $\mathrm{La}-\mathrm{N}$ bond distances are $2.452,2.467,2.543,2.625$ and $2.666 \AA$, respectively. The water O atom in (I) does not coordinate to Ce , but participates in intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), which stabilize the crystal packing (Fig. 2).

Experimental

$\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ and $L 1(1 \mathrm{mmol})$ were dissolved in anhydrous ethanol (20 ml). To this solution, an aqueous solution (30 ml) of $L 2(2 \mathrm{mmol})$ and $\mathrm{NaOH}(2 \mathrm{mmol})$ was added dropwise at 313 K . The mixture was stirred for 3 h and about half of the solvent was evaporated in a rotary vacuum evaporator at the same temperature. The resulting solution was filtered and left to stand in air for about 30 d. Large yellow block-like crystals were obtained. Elemental analysis found: $\mathrm{C} 55.08, \mathrm{H} 4.33, \mathrm{~N} 7.56 \%$; calculated for $\mathrm{C}_{84} \mathrm{H}_{80} \mathrm{Ce}_{2} \mathrm{~N}_{10} \mathrm{O}_{20}$: C 55.14, H 4.41, N 7.65%.

Crystal data
$\left[\mathrm{Ce}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}\right)_{6}-\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1829.82$
Triclinic, $P \overline{1}$
$a=11.750$ (6) A
$b=13.512$ (7) \AA
$c=14.068$ (7) \AA
$\alpha=65.430(6)^{\circ}$
$\beta=86.264(7)^{\circ}$
$\gamma=81.663(7)^{\circ}$
$V=2009.7(18) \AA^{3}$
$Z=1$
$D_{x}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 3651 reflections
$\theta=2.3-25.0^{\circ}$
$\mu=1.20 \mathrm{~mm}^{-1}$
$T=571$ (2) K
Block, yellow
$0.41 \times 0.32 \times 0.19 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.640, T_{\text {max }}=0.805$
10237 measured reflections

> 6953 independent reflections 5257 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.036$
> $\theta_{\max }=25.0^{\circ}$
> $h=-13 \rightarrow 13$
> $k=-15 \rightarrow 16$
> $l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.123$
$S=1.01$
6953 reflections
532 parameters

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Ce} 1-\mathrm{O} 7$	$2.429(4)$	$\mathrm{Ce} 1-\mathrm{O} 1$	$2.571(3)$
$\mathrm{Ce} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.463(4)$	$\mathrm{Ce} 1-\mathrm{N} 5$	$2.651(5)$
$\mathrm{Ce} 1-\mathrm{O} 8^{\mathrm{i}}$	$2.466(4)$	$\mathrm{Ce} 1-\mathrm{N} 4$	$2.660(5)$
$\mathrm{Ce} 1-\mathrm{O} 5$	$2.504(4)$	$\mathrm{Ce} 1-\mathrm{O} 2$	$2.667(4)$
$\mathrm{Ce} 1-\mathrm{O} 4$	$2.561(4)$		
$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{O} 1^{\mathrm{i}}$	$72.11(12)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 5$	$77.82(14)$
$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{O} 8^{\mathrm{i}}$	$137.67(13)$	$\mathrm{O} 4-\mathrm{Ce} 1-\mathrm{N} 5$	$70.59(14)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 8^{\mathrm{i}}$	$73.43(13)$	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 5$	$127.88(13)$
$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{O} 5$	$131.98(14)$	$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{N} 4$	$131.22(14)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 5$	$95.97(13)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{N} 4$	$153.45(14)$
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 5$	$75.27(14)$	$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{N} 4$	$80.02(14)$
$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{O} 4$	$80.92(13)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{N} 4$	$77.18(15)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 4$	$76.88(12)$	$\mathrm{O} 4-\mathrm{Ce} 1-\mathrm{N} 4$	$115.24(14)$
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 4$	$114.08(14)$	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{N} 4$	$97.05(13)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 4$	$51.12(14)$	$\mathrm{N} 5-\mathrm{Ce} 1-\mathrm{N} 4$	$61.75(15)$
$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{O} 1$	$75.56(12)$	$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{O} 2$	$71.73(12)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 1$	$74.90(13)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 2$	$118.90(11)$
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 1$	$72.33(12)$	$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{O} 2$	$105.35(13)$
$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 1$	$147.60(13)$	$\mathrm{O} 5-\mathrm{Ce} 1-\mathrm{O} 2$	$144.16(14)$
$\mathrm{O} 4-\mathrm{Ce} 1-\mathrm{O} 1$	$147.61(12)$	$\mathrm{O} 4-\mathrm{Ce} 1-\mathrm{O} 2$	$140.45(14)$
$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{N} 5$	$84.77(14)$	$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 2$	$49.32(11)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{N} 5$	$142.58(14)$	$\mathrm{N} 5-\mathrm{Ce} 1-\mathrm{O} 2$	$78.81(13)$
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Ce} 1-\mathrm{N} 5$	$137.13(14)$	$\mathrm{N} 4-\mathrm{Ce} 1-\mathrm{O} 2$	$67.90(13)$

Symmetry code: (i) $-x, 2-y, 1-z$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O10-H2 } \cdots \text { O }^{\text {ii }}}^{\text {ii }}$	$0.82(2)$	$2.06(2)$	$2.858(7)$	$165(6)$
O10 $^{\text {H1 }} \cdots$ O6 $^{6 i}$	$0.84(3)$	$2.10(3)$	$2.824(8)$	$145(5)$

Symmetry codes: (ii) $1+x, y, z$; (iii) $1+x, y, z-1$.
The water $\mathrm{O}-\mathrm{H}$ distances were restrained to 0.85 (3) \AA and the $\mathrm{H} \cdots \mathrm{H}$ distance to 1.38 (3) \AA; their $U_{\text {iso }}(\mathrm{H})$ values were allowed to refine. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The highest peak in the final difference map is $1.5 \AA$ from C36 and the deepest hole is $1.0 \AA$ from the Ce atom.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve
structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Fu, A.-Y., Wang, D.-Q. \& Shen, Q.-J. (2004). Acta Cryst. E60, m1346-m1348. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (19975). SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2005 International Union of Crystallography

